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Abstract
For a stable, marginally outer trapped surface (MOTS) in an axially symmetric
spacetime with cosmological constant 0Λ > and with matter satisfying the
dominant energy condition, we prove that the area A and the angular
momentum J satisfy the inequality J A A A8 (1 4 )(1 12 )π Λ π Λ π∣ ∣ ⩽ − − ,
which is saturated precisely for the extreme Kerr–de Sitter family of metrics.
This result entails a universal upper bound J J 0.17max Λ∣ ∣ ⩽ ≈ for such
MOTS, which is saturated for one particular extreme configuration. Our result
sharpens the inequality J A8π ∣ ∣ ⩽ (Dain and Reiris 2011 Phys. Rev. Lett. 107
051101, Jaramillo, Reiris and Dain 2011 Phys. Rev. Lett. D 84 121503), and
we follow the overall strategy of its proof in the sense that we first estimate the
area from below in terms of the energy corresponding to a ‘mass functional’,
which is basically a suitably regularized harmonic map .2 26 +→ However, in
the cosmological case this mass functional acquires an additional potential
term which itself depends on the area. To estimate the corresponding energy in
terms of the angular momentum and the cosmological constant we use a subtle
scaling argument, a generalized ‘Carter-identity’, and various techniques from
variational calculus, including the mountain pass theorem.
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1. Introduction

Some remarkable area inequalities for stable marginally outer trapped surfaces (MOTS) have
been proven recently [6–10, 14–16, 18–20]. In particular, for axially symmetric configura-
tions with area A and angular momentum J, there is the bound [7, 14]

J
A

8
, (1.1)π⩽

which is saturated for extreme Kerr black holes. Although a cosmological constant Λ does not
explicitly enter into (1.1), this inequality holds in the presence of a non-negative Λ. On the
other hand, when 0Λ > , stable MOTS obey the lower bound

A 4 , (1.2)1πΛ⩽ −

saturated for the extreme Schwarzschild–de Sitter horizon [12]. This readily implies the
universal upper bound

J (2 ) (1.3)1Λ⩽ −

which, however, can never be saturated even in theory (leaving practical considerations aside
in view of the fact that 1Λ− is of order 10122.

The situation bears some analogy to stable MOTS in (not necessarily axially symmetric)
spacetimes with electromagnetic fields and electric and magnetic charges QE and QM. In this
case the inequalities A Q4 2π⩾ [9] with Q Q QE M

2 2 2= + (saturated for extreme Reissner–
Nordström horizons) and A 4 1πΛ⩽ − imply the (unsaturated) bound Q .2 1Λ⩽ − There is
however the stronger bound [16]

A A Q4 16 0 (1.4)2 2 2Λ π π− + ⩽
which is saturated for extreme Reissner–Nordström–de Sitter configurations and, moreover,
improves the universal charge bound to Q (4 ) .2 1Λ⩽ −

Returning to the present axially symmetric case, the main objective of this article is to
incorporate explicitly the cosmological constant into inequality (1.1) and determine how it
controls the allowed values of the angular momentum. We prove the following theorem.

Theorem 1.1. Let  be an axially symmetric, stable MOTS together with an axially
symmetric 4-neighborhood of  called g( , ).ij On g( , )ij we require Einstein’s equations
to hold, with 0Λ > and with matter satisfying the dominant energy condition (DEC). Then
the angular momentum J and the area A of  satisfy

J
A A A

8
1

4
1

12
, (1.5)π

Λ
π

Λ
π⩽ − −⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

J J
3 2

8 3
1

1
3

0.17
. (1.6)max

4Λ Λ⩽ = − ≈
⎛
⎝⎜

⎞
⎠⎟

Here (1.5) is saturated precisely for the 1-parameter family of extreme Kerr–de Sitter
(KdS) horizons while the universal bound (1.6) is saturated for one particular such
configuration.

The proof of this theorem will be sketched in section 4, while details are postponed to
section 5. We discuss now its scope and the main differences, similarities and difficulties
compared to the ones cited above.

Class. Quantum Grav. 32 (2015) 145006 M E Gabach Clément et al

2



As 0Λ > , the main inequality (1.5) is stronger than both (1.1) and (1.2); in particular
it forbids the black hole to rotate as fast as its non-cosmological counterpart. Concerning
the saturation of (1.5), we observe the same pattern as in the previous inequalities: the
extreme solutions set a bound to the maximum values of charges and/or angular momentum.
The non-vanishing cosmological constant does not change this property of extreme black
holes.

Inequality (1.6) is obtained in a straightforward manner from (1.5) and makes use of an
interesting feature of the extreme KdS family. Given 0Λ > there exists a maximum value for
the angular momentum which is attained at a certain value of the area A. This property is not
shared by extreme Kerr horizons ( 0Λ = ), where the value of A determines the angular
momentum as J A8 .π ∣ ∣ = Note also that, as opposed to (1.3), (1.6) is sharp and improves the
numerical factor from 0.5 to 0.17 approximately.

As stated in theorem 1.1, the inequality (1.5) holds between the area and angular
momentum of stable MOTS’s. Nevertheless, due to the analogy between stable MOTS and
stable minimal surfaces in maximal slices, one can prove an analogous result for this type of
surfaces as well (see [6] for a discussion of the similarities of these surfaces within the context
of geometric inequalities).

Note that matter satisfying the DEC is allowed. The energy condition is required in order
to dispose of the matter terms and to arrive at the ‘clean’ inequality (1.5) where matter does
not appear explicitly. However, for electromagnetic fields we expect to obtain an inequality
between area, angular momentum, electromagnetic charges QE, QM and cosmological con-
stant which should reduce to (1.5) for Q = 0 and to (1.4) when J = 0. We discuss a
corresponding conjecture in section 6.

We now comment on the proof theorem 1.1 which is not a straightforward generalization
of previous results. To explain this we recall briefly the basic strategy of [7, 14] that leads to
(1.1). Starting with the stability condition one obtains a lower bound for the area of the MOTS
in terms of a ‘mass functional’ . This  is the key quantity in the proof, and depends only
on the twist potential and the norm of the axial Killing vector. The non-negative cosmological
constant and the matter terms (satisfying the DEC) neither appear in  nor later in the
discussion in this case. Therefore, the problem reduces to vacuum and with 0.Λ = Then, a
variational principle is used to obtain a lower bound for . The key point in this step is the
relation between  and the ‘harmonic energy’ of maps between the two-sphere and the
hyperbolic plane. This allows to use and adapt a powerful theorem by Hildebrandt et al [13]
on harmonic maps, which gives existence and uniqueness of the minimizer for . This
minimizer, in turn, gives the right hand side of (1.1).

In the present work where we strengthen (1.1) to (1.5), two important obstacles appear.
Firstly, the area A now appears not only as upper bound on the corresponding functional 
but also explicitly in  itself. This makes the variational principle hard to formulate. We
overcome this problem in essence by ‘freezing’ A as well as J to certain values corresponding
to an extreme KdS configuration, and by adapting the dynamical variables in  suitably.
Secondly, the relation of  to harmonic maps mentioned above no longer persists, whence
the proof of existence and uniqueness of a minimizer for  has to be done here from scratch.
We proceed by proving first that every critical point of  is a local minimum. Finally we use
the mountain pass theorem in order to get the corresponding global statement. Our paper is
organized as follows.

In section 2 we recall and adapt some preliminary material, in particular the definition of
angular momentum for general 2-surfaces, as well as the definition of a stable MOTS. In
section 3 we discuss relevant aspects of the KdS metric, focusing on the extreme case. In
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section 4 we sketch the proof of theorem 1.1, postponing the core of the argument to three key
propositions which are proven in section 5.

In section 6 we conjecture a generalization of our inequality to the case with electro-
magnetic field along the lines mentioned above already, and we also discuss briefly the case

0.Λ <

2. Preliminaries

2.1. The geometric setup

We consider a manifold  which is topologically a 4-neighborhood of an embedded
2-surface  of spherical topology.  carries a metric gij and a Levi-Civita connection .i�
(Latin indices from i onwards run from 0 to 3, and the metric has signature ( , , , )− + + + ).
The field equations are

G g T8 , (2.1)ij ij ijΛ π= − +

where Λ is the cosmological constant, and the energy momentum tensor Tij satisfies the DEC.
In sections 2 and 3 we allow Λ to have either sign; this enables us to compare with and to
carry over useful formulas from work which focuses on Kerr–anti-de Sitter, in particular [4]
and [5].

We next introduce null vectors ℓ i and k i spanning the normal plane to  and normalized
as ℓ k 1.i

i = − We denote by q g ℓ k2ij ij i j( )= + the induced metric on  , the corresponding

Levi-Civita connection by Di and the Ricci scalar by R.2
ijϵ and dS are respectively the

volume element and the area measure on . The normalization ℓ k 1i
i = − leaves a (boost)

rescaling freedom ℓ fℓi i′ = , k f k .i i1′ = − While this rescaling affects some quantities intro-
duced below in an obvious way, our key definitions such as the angular momentum (2.4) and
the definition of stability (2.12) are invariant, and the same applies to all our results. The
expansion ℓ( )θ , the shear ij

ℓ( )σ and the normal fundamental form i
ℓ( )Ω associated with the null

normal ℓi are given by

q ℓ q q ℓ q k q ℓ,
1
2

, . (2.2)ℓ ij
i j ij

ℓ k
i

l
j k l

ℓ
ij i

ℓ j k
i k j

( ) ( ) ( ) ( )� � �θ σ θ Ω= = − = −

2.2. Twist and angular momentum

We now assume that  as well as i
ℓ( )Ω are axially symmetric, i.e. there is a Killing vector iη

on  such that

q 0 0. (2.3)ij i
ℓ( )  Ω= =η η

The field iη is normalized so that its integral curves have length 2 .π
We define the angular momentum of  as

J S
1

8
d , (2.4)i

ℓ i( )

∫π Ω η=

which will be related to the Komar angular momentum shortly.
By Hodge’s theorem, there exist scalar fields ω and λ on  , defined up to constants, such

that i
ℓ( )Ω has the following decomposition
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D D
1
2

. (2.5)i
ℓ

ij
j

j
( )Ω η ϵ ω λ= +

From axial symmetry it follows that

D D
1
2

1
2

, (2.6)i
i

ℓ
ij

i j i
i

( ) 1 2η Ω η ϵ η ω η ξ ω= = −

where i
iη η η= and iξ is a unit vector tangent to  and orthogonal to .iη

We now recall from [7] that on any axially symmetric 2-surface one can introduce a
coordinate system such that

q x xd d e e d e sin d (2.7)ij
i j c2 2 2 2θ θ φ= +σ σ−

for some function σ and a constant c which is related to the area A of  via A 4 e .cπ= In such
a coordinate system we can write J as

J
1
8

d
1
8

[ ( ) (0)], (2.8)
0

∫ ω θ ω π ω= − ′ = − −
π

where here and henceforth a prime denotes the derivative w.r.t. θ. From now onwards we
assume that the Killing vector iη on  extends to  as a Killing vector of gij. Of course this
implies (2.3). Moreover, it follows that ℓ k 0.i i = =η η Using the first equation we obtain

k ℓ . (2.9)i
i

ℓ j i
i j

( ) �η Ω η= −
Inserting (2.9) in (2.4) we see that it indeed coincides with the Komar angular momentum

J S
1

8
d . (2.10)i j

ij�∫π η=

We finally introduce the twist vector

. (2.11)i ijkl
j k l�ω ϵ η η=

If the energy momentum tensor vanishes on  , we have 0.i j[ ]� ω = Hence there exists a
twist potential ω, defined up to a constant, such that .i i�ω ω= The restriction of this scalar
field to  is easily seen to coincide with the ω introduced in (2.5), which justifies the notation.

In what follows we will refer to the pair ( , )σ ω on  as the data.

2.3. Stable MOTS

We now take  to be a marginally trapped surface defined by 0.ℓ( )θ = We will refer to ℓ i as
the outgoing null vector, which leads to the name MOTS.

Moreover, following [2] (section 5) we now consider a family of two-surfaces in a
neighborhood of  together with respective null normals ℓi and ki and we impose the fol-
lowing additional requirements on  and its neighborhood.

Definition 2.1. A marginally trapped surface  is stable if there exists an outgoing ( ki− -
oriented) vector X ℓ ki i iγ ψ= − , with 0γ ⩾ and 0ψ > , such that the variation Xδ of ℓ( )θ with
respect to X i fulfills the condition

0. (2.12)X
ℓ( )δ θ ⩾

Two remarks are in order here. Firstly, it is easy to see (see section 5 of [2]) that stability
of  w.r.t. some direction X i implies stability w.r.t all directions ‘tilted away from’ ℓ .i

In particular, since k
ℓ

X
ℓ( ) ( )δ θ δ θ⩾ψ− stability w.r.t. any X i implies stability in the
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past outgoing null direction k .i− This latter condition suffices as requirement for all our
results.

The other remark concerns the relation between stability and axial symmetry. We recall
that in [7, 14], inequality (1.1) was proven under the symmetry requirements (2.3) and under a
stability condition similar to definition 2.1 which, however, required ψ to be axially sym-
metric as well. (Axial symmetry of γ was also assumed but not used in the proof). In contrast,
in the present theorem (1.1) we impose the stronger symmetry requirement that  as well as
its neighborhood  are axially symmetric. In this case it suffices to impose the stability
condition (2.12) as above, namely without explicitly requiring axial symmetry of ψ, since the
existence of an axially symmetric function ψ∼ then follows automatically, see theorem 8.2. of
[2]. Moreover, for strictly stable MOTS (which satisfy 0X

ℓ( )δ θ ≢ in addition to (2.12)) there
follows even axial symmetry of the surface itself if its neighborhood is axially symmetric (see
theorem 8.1. of [2]).

3. Kerr–de Sitter

In this section we review some relevant properties of the event horizons of the KdS solutions,
making use of [4, 5], and references therein. Other aspects of the rich and complex structure
of these spacetimes can be found in [11].

3.1. The metric, the horizon and the angular momentum

In ‘Boyer–Lindquist’ coordinates, the KdS metric is

s t
a

r a t
r a

d d
sin

d d d
sin

d d ,

(3.1)

2
2

2 2 2
2

2
2

2

2

2 2 2ζ
ρ

θ
κ ϕ ρ

ζ
ρ
χ θ χ θ

ρ κ ϕ= − − + + + − +⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where

( )r a
r

mr r a1
3

2 , cos (3.2)2 2
2

2 2 2 2ζ Λ ρ θ= + − − = +
⎛
⎝⎜

⎞
⎠⎟

a a
1

3
, 1

cos
3

, (3.3)
2 2 2

κ Λ χ Λ θ= + = +

where m and a satisfy certain upper bounds, cf. [4, 5].
As a function of r, ζ has one negative root and three positive roots (possibly counted with

multiplicities). The greatest root, rch, marks the cosmological horizon, while the second
greatest, rh, marks the event horizon (from now on simply called ‘horizon’).

The area of the horizon is

( )
A

r a4
(3.4)

h
2 2π
κ=

+
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and the induced metric on it reads

sd d sin d , (3.5)h

h

h

h

2
2

2 2

e

2 4

2

e

2 2 2

q2⏟⏟
μ

κ ρ
κ ρ
μ χ

θ θ ϕ= +

σ

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

where r a( )h h
2 2 2 2μ χ= + and r a cos .h h

2 2 2ρ θ= + Hence

r a A
e e const.

4
(3.6)q H c

2 2

κ π= + = = =σ+

and the metric is in the ‘canonical form’ (2.7) of [7]

( )sd e e d sin d (3.7)q2 2 2 2 2θ θ ϕ= +σ

with q c const.σ + = =
We now calculate the twist potential ( )ω η everywhere (not only on  ), for d .aη ϕ= ∂

Adapting a known calculation in the case 0Λ = (see e.g. appendix A of [3]) and omitting
some intermediate steps, we find

( )g g g g g g g g
sin

(3.8)rt
rr tt

r t rt
rr t

r
tt

r t
t

rω ω ϵ η ϵ η ζ θ
κ

′ = = ∂ + ∂ = − ∂ + ∂θ θϕ θϕ ϕ
ϕ ϕ

ϕ
ϕϕ

( ) ( )g g g g
ma

r a
r

r a
sin

2 sin 2
(3.9)r t t r

3

2 2
2 2

2

2
2 2κ

χ θ
θ

κ ρ ρ
= − ∂ − ∂ = − − + +ϕϕ ϕ ϕ ϕϕ

⎡
⎣⎢

⎤
⎦⎥

ma a2
cos 3 cos

cos sin
. (3.10)

2
3

2 4

2κ θ θ θ θ θ
ρ

= − ∂
∂ − −

⎛
⎝⎜

⎞
⎠⎟

It follows that

ma a2
cos 3 cos

cos sin
. (3.11)

2
3

2 4

2
ω

κ
θ θ θ θ

ρ
= − − −

⎛
⎝⎜

⎞
⎠⎟

We note that compared to the case 0Λ = , ω just gets an extra factor 1 .2κ Integrating and
using (2.8) we obtain in particular that

J am (3.12)2κ=
which agrees with equation (2.10) of [5] and equation (18) of [4].

3.2. Extreme horizons

When at least two of the three non-negative roots of r( )ζ coincide, (one of which is
necessarily rh), the horizon is called extremal. When this happens the geometry near the
horizon degenerates to a ‘throat’. We refer to [5] for a further discussion. In what follows we
will just need the relation between the parameters m a A, , ,Λ and J which we derive
explicitly.

For extremal event horizons the radius of the limiting sphere re satisfies, in addition to
r( ) 0eζ = , the equation
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r

r
r

a
m0

1
2

d
d

2
3

1
3

. (3.13)e
e

e

3 2ζ Λ Λ= = − + − −
⎛
⎝⎜

⎞
⎠⎟

Here and henceforth a subscript e indicates extremality. Eliminating m from r( ) 0eζ = and
(3.13) we obtain

r r
a

a
3

1 0. (3.14)e e
4 2

2
2Λ Λ+ − + =

⎛
⎝⎜

⎞
⎠⎟

For 0Λ ⩽ this equation has just a single root which can be called extremal horizon,
while for 0Λ > there are two solutions r re = ± for given J. Explicitly, for 0Λ > ,

r
a a

a
1

2
1

3
1

2
1

3
4 . (3.15)2

2 2 2
2

Λ
Λ

Λ
Λ Λ= − ± − −±

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

When r re = −, (and re is not a triple root), the first two positive roots meet and r re ch< , which
means that a cosmological horizon persists in spacetime. On the other hand when r re = +, then
the last two positive roots coincide and the event and the cosmological horizons become both
extremal (and merge).

Using (3.14) to eliminate a2 from (3.4) we find

A
r

r

8

1
. (3.16)e

e

2

2

π
Λ

=
+

On the other hand, eliminating re from (3.14) and (3.4) gives

a
A A

A A4
1 4

(1 8 )(1 12 )
. (3.17)2

π
Λ π

Λ π Λ π= −
− −

In equation (3.12) we eliminate now m using (3.13), then a2 using (3.14) and finally re
2 using

(3.16). We obtain the following simple relation between the angular momentum and the area
for extreme K(a)dS

J A
A A A

( )
8

1
4

1
12

(3.18) π
Λ

π
Λ

π= ≔ − −⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

which after a trivial reformulation agrees with (2.32) of [5]. In the case 0Λ > and J = 0 the
zeros of the parentheses correspond to the black hole horizon and the cosmological horizon of
Schwarzschild–de Sitter, respectively.

For 0Λ > we are only interested in the domain A 4 1Λ π < –recall that this bound can be
shown for all stable MOTS (irrespectively of spherical symmetry) [12]. In this range of A,
(3.18) takes on a maximal value

J A
3 2

8 3
1

1
3

0.17
at

6
1

1
3

(3.19)max max
4Λ Λ

π
Λ= − ≈ = −

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

which is the value stated in (1.6). Moreover, for each J with J Jmax∣ ∣ < there are two values
A J A J( ) ( )<− + for the area, see figure 1. We are now ready to describe the proof of
theorem 1.1.
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4. The structure and the proof of the main theorem

The main inequality

J A( ) (4.1)⩽

with  given in (3.18) and 0Λ > will not be shown directly but it will follow from a related
one. This is explained in the following theorem:

Theorem 4.1. For any given MOTS with area A, cosmological constant Λ and angular
momentum J, there is a unique extreme KdS solution with area Â constant Λ and angular
momentum Ĵ such that

J

A

J

A

ˆ

ˆ
, (4.2)

2 2
=

and Â 4 .Λ π⩽ Moreover, the inequality J A( )∣ ∣ ⩽ is equivalent to the inequality

A Aˆ . (4.3)⩾

Figure 1. The shaded region represents all points satisfying J A( ).∣ ∣ ⩽

Figure 2. The construction described in theorem 4.1.
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Proof. The first result, leading to equation (4.2), is intuitively clear from figure 2 since
through any point (A, J) there is a unique parabola J A const.2 = , and any such parabola
intersects the ‘extreme’ curve J A( )= precisely once apart from the trivial point (0, 0). To
state this rigorously, let A Âλ ≔ and hence J Jˆ 2λ∣ ∣ = ∣ ∣ and Â 4 .Λ π⩽ Then the hatted
version of (3.18) gives a quadratic equation for J A( , ).λ If J A32 32 2π Λ∣ ∣ > this equation
has a unique solution other than (0, 0). Otherwise, there are two non-trivial solutions but only
one of them lies in the region of interest Â 4 .Λ π⩽

To prove the equivalence between (4.1) and (4.3), assume first that A Aˆ .⩾ Then

( )A A J
A
J

A
A
J

A A
J

ˆ ˆ ˆ ( ) ˆ
, (4.4)2 2 2 2

2

2

  λ
λ

⩽ = = =

where we have used (4.2), (3.18) and A Aˆ λ= , respectively. We next use that the function
A( )

2

 λ
λ is monotonically decreasing with λ and therefore, as A Aˆ ⩾ we bound the last term as

A( ).A( )
2  ⩽λ

λ Putting this together with (4.4) we find

A A
A
J

ˆ ( )
ˆ

(4.5)
2

2

⩽

which gives the desired result, that is, that (4.3) implies (4.1).
To prove the converse assume J A( ).∣ ∣ ⩽ Then J Jˆ 2λ= and (3.18) give

A J J A( ) ˆ ( ) (4.6)2 2 λ λ λ= = ⩽

and therefore

A
A

( )
( ). (4.7)

2

 λ
λ

⩽

Again, due to the monotonicity of the left hand side with respect to λ we obtain A Aλ ⩾ which
is (4.3). □

Having established the equivalence between the main inequality (4.1) and (4.3), the next
section will be devoted to proving (4.3) for a stable MOTS  with area A, angular momentum
J and data ( , ).σ ω The proof consists of the same two steps as in the case 0.Λ = However, as
we mentioned in the introduction and as we will see below, when 0Λ > many new com-
plications arise.

In general terms the basic steps can be described as follows.
Step I. We write the stability inequality (2.12) in terms of the data ( , )σ ω and multiply it

by an axially symmetric function 2α whose choice is motivated by the form of the data ( , )σ ω
of the extreme KdS horizon. Then we integrate it on  to obtain a lower bound for A in terms
of the so-called mass functional  depending on the dynamic variables ( , ).σ ω The result is
the following proposition:

Proposition 4.2. Let ( , )σ ω be the data of a stable MOTS of area A and angular momentum
J. Then, for any real number a the following inequality holds

A
4

e , (4.8)
A a( , , , )

8


π ⩾
σ ω β

κ
−
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where the functional  is given by

( )
A a

a A
( , , , ) 4

1 cos
4

4
e sin d ,

(4.9)

0

2
2

2

2 2 2

 ∫σ ω σ ω
η

σ
Λ θ

χ π Λ χ θ θ≔ ′ + ′ +
+

+
π σ−⎜ ⎟

⎡

⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥⎥

where

4 sin d (4.10)
0

2∫β χ χ
χ θ θ= + ′π ⎛

⎝⎜
⎞
⎠⎟

and where a( )χ has been defined in (3.3).

At this stage the constant a is arbitrary, but it will be fixed in the next step.
Step II. The difficulty now is to choose a conveniently and to show that, with such a, the

rhs of (4.8) has the lower bound A A4 ˆ .2 π This would prove (4.3), (hence (4.1) by theo-
rem 4.1).

We choose a equal to the value that it would take for the extreme black hole of area Â .
The explicit form is (3.17) with A replaced by Â . We will denote it by â and we denote by
ˆ, ˆκ χ and β̂ , the values of κ, χ and β when a is replaced by â in (3.3),and (4.10). Then, for the
data ( , )σ ω of the given MOTS define

ˆ 2 ln ˆ , (4.11)2σ σ λ ω λ ω≔ + =
where (again) A Â .λ = With this change of variables we obtain

( ) ( )( )A a A a A A, , , ˆ ˆ , ˆ , ˆ , ˆ 16 ln ˆ . (4.12) σ ω σ ω κ= −

Thus

( )A A

A4
e

ˆ
e (4.13)

( )A a A a, , , ˆ ˆ

8 ˆ

2 ˆ, ˆ , ˆ , ˆ ˆ

8 ˆ
 

π ⩾ =
σ ω β

κ
σ ω β

κ
− −

⎜ ⎟⎛
⎝

⎞
⎠

and we need to prove proposition 4.3.

Proposition 4.3. In the setup explained above we have

( ) A
e

ˆ

4
. (4.14)

A aˆ, ˆ , ˆ , ˆ ˆ

8 ˆ


π⩾

σ ω β
κ

−

We wish to mention the following point here. (4.14) means that the lower bound is obtained
by minimizing the functional A a( ˆ, ˆ , ˆ , ˆ) σ ω among all pairs ( ˆ, ˆ )σ ω of smooth functions with

J8 ˆ ( ˆ ( ) ˆ (0)).π ω π ω= − − A particular class of such functions has been constructed above via
(4.11) from smooth data ( , )σ ω on a smooth MOTS of area A and angular momentum J.
However, this does not mean that ( ˆ, ˆ )σ ω will still form smooth data on a smooth MOTS of
area Â and angular momentum Ĵ . This can be seen as follows. In order for the MOTS to be
smooth (free of conical singularities), the coordinate function q must vanish at the poles, i.e.
q q(0) ( ) 0π= = which implies that A 4 e (0)π= σ = 4 e .( )π σ π But inserting the scaling law
(4.11) in the latter relation contradicts the smoothness property Â 4 e ˆ (0)π= σ = 4 e ˆ ( )π σ π for the
hatted data, (except in the trivial case 1λ = ). Therefore, A a( ˆ, ˆ , ˆ , ˆ) σ ω should be considered
as ‘abstract’ functional in the sense that its arguments are no longer directly related to any
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MOTS. Nevertheless, extreme KdS is not only a critical point of A a( , , , ) σ ω but also of
A a( ˆ, ˆ , ˆ , ˆ) σ ω , and the properties of the latter functional enable us to prove (4.14).

Next we present the proofs of propositions 4.2 and 4.3.

5. Proof of the main propositions

5.1. Proof of proposition 4.2

Proof. The proof is analogous to the case 0Λ = [14] to which it reduces by setting 1.χ ≡
The starting point is the stability inequality (2.12) in which we take ψ to be axially symmetric
without loss of generality (see the remarks after definition 2.1). In terms of the quantities
introduced in section 2 we obtain, integrating (2.12) against any axisymmetric function

: 5α → ,

D
R

S
2

d 0. (5.1)ℓ2
2

2 2 ( ) 2 2

∫ α α α Ω Λα+ − − ⩾
⎛
⎝⎜

⎞
⎠⎟

As mentioned in the previous section, we choose the trial function based on the form of the
extreme KdS geometry as

e . (5.2)1 2 2α χ= σ−

In the coordinates (3.7) the scalar curvature takes the form

( )R
e
sin

2 cos sin 2 sin sin . (5.3)
c

2
2

2

θ σ θ θσ θ θσ= − ′ − ′ + − ′ ′
σ− ⎡⎣ ⎤⎦

Using this expression we obtain

D
R

S
1

2 2
d

4 2 4
sin d (5.4)2

2
2

0

2 2

∫ ∫π α α χσ σ χ χ
χ θ θ+ = ′ − ′ ′ + ′π⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
cos

sin
2

sin
sin

2
d . (5.5)

0

2∫ χσ θ χσ θ χ θ χ θσ θ− ′ − ′ + −
′ ′π ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

Integration by parts and some rearrangement yields

D
R

S
a1

2 2
d

4
1

2
3

cos sin d (5.6)2
2

2

0

2 2

∫ ∫π α α σ σ Λ θ θ θ+ = − ′ + +
π⎛

⎝⎜
⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

4
sin d cos . (5.7)

0

2

0∫ χ χ
χ θ θ χσ θ+ + ′ −

π π⎛
⎝⎜

⎞
⎠⎟

Using (3.6), the last term in line (5.7) above is equal to A2 ln( 4 ).κ π Finally, still following
[14], we have

( ) S
1

2
d

1
4 e sin

sin d e e sin d .

(5.8)

ℓ c2 ( ) 2 2

0

2

2 4
2

0∫ ∫ ∫π α Ω Λα χ ω
θ

θ θ Λ χ θ θ− + = − ′ −
π

σ

π σ−
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Combining equations (5.1), (5.6)–(5.7) and (5.9) we find

A
2 ln

4 4
(5.9)

κ π
β⩾ −⎜ ⎟⎛

⎝
⎞
⎠

with β as in (4.10). This expression is equivalent to (4.8) as wished. □

5.2. Proof of proposition 4.3

In this section we prove (4.14) where the hatted variables ( ˆ, ˆ )σ ω refer to the rescaled
quantities introduced in (4.11). To simplify the notation, for this section only, we omit the
hats on these functions. With the new notation, inequality (4.14) reads

( ) A
e

ˆ

4
. (5.10)

A a, , ˆ , ˆ ˆ

8 ˆ


π⩾

σ ω β
κ

−

As in the proof of the inequality in the 0Λ = case, this step is done by minimizing the
functional . We find first a minimum of  for functions ,σ ω defined on compact intervals
[ , ] (0, )a bθ θ π∈ (in propositions 5.1 and 5.2), and then take the limit [ , ] [0, ]a bθ θ π→ to find
(5.10) (in proposition 5.3). Recall that when 0Λ = the extreme Kerr geometry is the mini-
mizer of the corresponding functional.

In this 0Λ > case, we find by a straightforward computation that extreme KdS data
( , )e eσ ω is a critical point of , that is, the explicit functions

( )ar r a
e

ˆ

ˆ ˆ
,

2 ˆ ˆ ˆ ˆ ˆ sin

ˆ ˆ
(5.11)e

e
e

e e

e e

2

2 2

2 2 2 3

4
e

μ
κ ρ

ω
χ θ

μ ρ
= ′ =

− +
σ

satisfy the Euler–Lagrange equations of :

( )( ) a
A1

sin
d

d
2ˆ sin

2ˆ
4 1 ˆ cos

ˆ ˆ

4
e

(5.12)

2

2
2 2

2

2θ θ χ σ θ χ ω
η

Λ θ Λχ
π

∂ = − ′ + + −θ σ−

d
d

sin
ˆ

0. (5.13)
2θ θ χ ω

η
∂ =θ⎛

⎝⎜
⎞
⎠⎟

In (5.11), the quantities êρ , ˆeκ , êμ r̂e and êχ were defined in (3.2), (3.3), below (3.5) and in
(3.14) but carrying subscripts and hats they refer here to the extreme KdS solution with
parameter â. Using (3.14) it is easy to see that the above eω′ indeed coincides with (3.9) and
therefore with (3.10).

This property of extreme KdS geometry will play a fundamental role in the proof of
(5.10), but before going into details, some preliminary definitions are needed.

Preliminaries. Let 0 a bθ θ π< < < be fixed. For any function f : [ , ]a b 5θ θ → in H1,2

define

f f f d , (5.14)L2
2 2 2

a

b

2 ∫ θ∥ ∥ ≔ ∥ ∥ =
θ

θ

( )f f f f f fd . (5.15)H1,2
2 2 2

2
2

2
2

a

b

1,2 ∫ θ∥ ∥ ≔ ∥ ∥ = ∂ + = ∥∂ ∥ + ∥ ∥
θ

θ
θ θ

⎡⎣ ⎤⎦
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Then, for any 1 2θ θ< , ( a 1θ θ< and b2θ θ< ), we have

( ) ( )f f f . (5.16)1 2
2

2 1 1,2
2θ θ θ θ− ⩽ − ∥ ∥

This says in particular that f is uniformly continuous and we have

{ }( ) [ ]f f f f f fsup ( ): , , (5.17)a a a b
2 2

2
2

1,2
2θ θ θ θ π π∥ − ∥ ≔ − ∈ ⩽ ∥∂ ∥ ⩽ ∥ ∥θ∞

where f f ( ).a aθ=
We will use the affine space abΓ of H1,2 paths : [ , ]a b

25γ θ θ → , ( , )γ σ ω= , such that

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (5.18), , and , , ,a a e a e a b b e b e bσ θ ω θ σ θ ω θ σ θ ω θ σ θ ω θ= =
where ( , )e eσ ω are the data of extreme KdS of area Â .

In line with the notation (5.14) we use the shorthand 1 2 1,2
2

1 2 1,2
2γ γ σ σ∥ − ∥ ≔ ∥ − ∥ +

.1 2 1,2
2ω ω∥ − ∥

Let ( ):ab ab ab 5  γ Γ= → be the functional given by

( )
( ) ( )a A

( ) 4
1 ˆ cos

ˆ e sin
4

ˆ

4
e ˆ sin d .

(5.19)

ab
2

2 2 2

2 4

2

a

b ∫γ σ σ
Λ θ

χ
ω

θ
Λ π χ θ θ= ∂ +

+
+ ∂ +

θ

θ
θ

θ
σ

σ−
⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟

Note that this functional is the same as the  appearing in (5.10) except that the integration is
over [ , ]a bθ θ and that the arguments ( , )γ σ ω= vary in .abΓ

The functional ab . Consider the change of variables ( , , ) ( ¯, ¯, ¯ )θ σ ω θ σ ω→ given by

d ¯

d
sin ¯

sin ˆ ( )
, ¯ 2 ln

sin
sin ¯ , ¯ . (5.20)

θ
θ

θ
θχ θ σ σ θ

θ ω ω= = + =

Explicitly, ¯ ( )θ θ reads, with a suitable choice of the integration constant,

(5.21)
a

atan
¯

2
tan

2
exp

ˆ
ˆ 3

arctan ˆ
3

cos .
1 ˆθ θ

κ
Λ Λ θ= −

κ
⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

It follows that the map ¯θ θ→ is a diffeomorphism from [0, ]π into [0, ]π and that
c c0 (sin sin ¯)1 2θ θ< < < < ∞ for c1 and c2 depending only on â .2Λ The transformation of

the affine space abΓ will be denoted by .abΓ A straightforward computation shows

(5.22)

d
a

( ) ( ¯)

4 cos ¯

sin ¯
¯ 4 ¯ cos ¯ 4 cos

ˆ
3

cos

4ˆ cos
sin

d ,

ab ab

¯

¯ 2

¯
¯ 2

3

2

a

b

a
b

a
b

a

b

 
∫
∫

γ γ
θ

θ
θ σ θ σ θ Λ θ

χ θ
θ

θ

=

+ + +

−

θ

θ
θ
θ

θ
θ

θ

θ

⎛
⎝⎜

⎞
⎠⎟

where the functional ( ¯):ab ab ab 5  γ Γ= → is given by

( ) ( )

(5.23)

A
( ¯) ¯ 4 ¯

¯

e sin ¯
4

ˆ

4
sin
sin ¯

ˆ ( ) e sin ¯d ¯.ab
¯

¯

¯
2

2

2 ¯ 4

2 4

4
2 ¯

a

b ∫γ σ σ ω
θ

Λ
π

θ
θ

χ θ θ θ= ∂ + + ∂ +
θ

θ
θ

θ
σ

σ−
⎛

⎝
⎜⎜

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎞

⎠
⎟⎟
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Thus, the functionals :ab ab 5 Γ → and : :ab ab 5 Γ → differ by a constant and boundary
terms This immediately implies that γ is a critical point of ab iff γ̄ is a critical point of .ab
In particular as eγ is a critical point of ab , ēγ is a critical point of .ab As we will explain
below, the nature of critical points of the functional ab can be easily analysed via a crucial
formula due to Carter. A similar simple formula to analyse the critical points of ab is
unknown to us. For this reason we will continue working with ab rather than with .ab

The results. The next three propositions together prove proposition 4.3. Propositions 5.1
and 5.2 deal with the minimization of the restricted functional .ab Then, proposition 5.3
establishes the connection between the minimization of ab (or, equivalently, the mini-
mization of ab ) and the minimization of the original functional  that ultimately leads to
(5.10) and proposition 4.3. The angles , (0, )a bθ θ π∈ defining ab are arbitrary.

Proposition 5.1. For any critical point c̄γ of ab there are constants 0ϵ > and c 0> , such
that if ¯ c̄ 1,2

γ γ ϵ∥ − ∥ ⩽ then

( ) c( ¯) ¯ ¯ ¯ . (5.24)ab ab c c 1,2
2 γ γ γ γ⩾ + ∥ − ∥

In particular ab achieves a strict local minimum at any of its critical points.

Proposition 5.2. ab has only one critical point ¯ ¯c eγ γ= and ( ¯ )ab e γ is a global minimum,
i.e.

( )( ¯) ¯ . (5.25)ab ab e γ γ⩾

Proposition 5.3. We have

( ) ( )A a A a, ˆ , ˆ , ˆ , ˆ (5.26)ab ab e γ γ⩾

for functions ( , )γ σ ω= having the boundary values ,a bγ ∣θ θ = .e ,a bγ ∣θ θ
Moreover, taking the limit [ , ] [0, ]a bθ θ π→ we have

( ) ( )A a A a, ˆ , ˆ , ˆ , ˆ . (5.27)e γ γ⩾

The explicit form of ( )e γ gives (5.10).

Note that taking the limit ( , ) (0, )a bθ θ π→ is a very delicate issue as the limit boundary
values of σ are not necessarily the same as those of .eσ We will treat this problem following
the ideas of [1].

Proof of proposition 5.1. For given γ̄ let ˜ ( ˜, ˜ ) ¯ c̄γ σ ω γ γ= ≔ − and define the path
¯ ¯ ˜cγ γ τγ= +τ for τ in [0, 1]. The Taylor expansion of ( ¯ )ab γτ at 0τ = gives

( ) ( ) ( )( ¯) ¯
1
2

¯
1
6

¯ , (5.28)
*

ab ab c ab ab
2

0

3   γ γ γ γ= + ∂ + ∂τ τ
τ

τ τ
τ τ= =

where 0 * 1.τ⩽ ⩽ The proof of proposition (5.1) comes from analysing the last two terms on
the right hand side of (5.28). We do that separately.

To simplify notation set ( ¯ ) .ab ab γ =τ Moreover, in the present proof primes on
functions denote derivatives .¯∂θ The first τ-derivative of ab as a function of τ is
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( )
D D

D D D
2 ˜ · ¯ 2 ¯

˜ · ¯ ˜ ¯

¯
˜ e

2
sin ¯d ¯, (5.29)ab

¯

¯
2

2

¯

a

b l l
l l l

 ∫ σ σ σ
ω ω σ ω

η
σ θ θ∂ = + +

−
−τ

θ

θ σ−
⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

where

A
4

ˆ

4
sin

sin ¯
ˆ ( ) (5.30)

2 4

4
2 Λ π

θ
θ

χ θ≔
⎛
⎝⎜

⎞
⎠⎟

and the derivative operator Dl and the dot products are taken with respect to the standard
metric on .26 (Due to axisymmetry D ¯l = ∂θ). Evaluate at 0τ = , integrate by parts and use the
boundary conditions to obtain the Euler–Lagrange equations for ab , namely

( )D
¯ 2

¯

¯ 2
e , (5.31)c

c

c

2

2
¯cl

l Δ σ
ω
η

− + = − σ−

D
D ¯

¯
0, (5.32)c

c
2

l
lω
η

=
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where ¯ e sin ¯
c

¯ 2cη θ= σ , and lΔ is the Laplace operator with respect to the standard metric on .26

(Again, due to axisymmetry, lΔ involves only derivatives with respect to θ̄).
The second τ-derivative of ab reads

( ) ( ) ( )
D

D D D D
2 ˜

2 ˜ ¯ 4 ˜ ¯ · ˜ ˜

¯
˜ e

2
sin ¯d ¯.

(5.33)

ab
2

˜

˜ 2
2 2 2

2

2 ¯

a

b l
l l l l


∫ σ

σ ω σ ω ω ω
η

σ θ θ

∂

= +
− +

+

τ

θ

θ σ−
⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

Next, recall Carter’s identity in the form (see [8])

F G G G G H˜ ˜ 2 ˜ ˜ ¯ ˜ , (5.34)¯ ¯ ¯
2 2

¯σ ω σω η ω+ ′ + ′ + − =σ ω ω σ−

where

( )G D( ) ¯ ¯ ¯ 2, (5.35)¯
2 2l lτ Δ σ η ω= + −σ −

( )G D D( ) ¯ ¯ , (5.36)¯
2l lτ η ω=ω −

( )G D D D( ) ˜ ¯ 2 ˜ . ¯ 2 ˜ ¯ , (5.37)¯
2 2l l l lτ Δ σ η ω ω σ ω′ = + −σ

− ⎜ ⎟⎛
⎝

⎞
⎠

( )( )G D D D( ) ¯ ˜ 2 ˜ ¯ , (5.38)¯
2l l lτ η ω σ ω′ = −ω

−

and

( )( ) ( ) ( )F D D D D D D( ) ˜ ˜ ¯ ¯ ˜ ¯ ¯ ˜ ¯ ¯ ˜ ¯ ˜ ¯ ¯ ,

(5.39)

2 2 1 1
2

1 2 2l l l l l lτ σ ωη ω ωη η σ ω η σ ω ωη η= + + − + −− − − − −

( )( )H D D D( ) ˜ ˜ ˜ ¯ ˜ ¯ . (5.40)1 1l l lτ σ σ ωη ωη= + − −
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Now we can use the expressions for G ′̄σ and G ′̄ω to obtain, after a simple integration by
parts,

G G2 ˜ ˜
1
2

˜ e sin ¯d ¯. (5.41)ab
2

¯

¯

¯ ¯
2 ¯

a

b ∫ σ ω σ θ θ∂ = − ′ + ′ −τ θ

θ
σ ω

σ−⎜ ⎟⎛
⎝

⎞
⎠

Using (5.34), integrating by parts once again and using the boundary conditions ˜( ¯ )aσ θ =
˜( ¯ ) 0bσ θ = , ˜ ( ¯ )aω θ = ˜ ( ¯ ) 0bω θ = to get rid of H, yields

F G G2 2 ˜ ˜ ¯ ˜
1
2

˜ e sin ¯d ¯. (5.42)ab
2

¯

¯

¯
2 2

¯
2 ¯

a

b ∫ σω η ω σ θ θ∂ = + − +τ θ

θ
ω σ σ− −⎜ ⎟⎛

⎝
⎞
⎠

Evaluating at 0τ = and using the Euler–Lagrange equations, we obtain

( )F2
1
2

¯ ˜ ˜ e sin ¯d ¯, (5.43)ab c
2

0
¯

¯
2 2 2 ¯

a

b
c ∫ η ω σ θ θ∂ = + +τ τ

θ

θ σ=
− −⎜ ⎟⎛

⎝
⎞
⎠

which can be written in the form

(5.44)2 ˜
¯

˜
¯

˜
¯ ¯

˜ab
c

c c c

c

c

2
0

2 2

a

b ∫ σ ω
η

ω
η

ω
η

ω
η σ∂ = ′ + ′ + ′ − ′

τ τ θ

θ
=

⎧
⎨⎪
⎩⎪

⎛
⎝⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟⎟

⎛
⎝⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟⎟

˜
¯

˜ ¯

¯ 2
˜
¯

˜ e sin ¯d ¯. (5.45)c

c

c

c c
2

2 2

2 ¯c
σω

η
ωη
η

ω
η σ θ θ+ ′ −

′
+ + σ−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎡
⎣⎢⎢

⎤
⎦⎥⎥

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

We proceed by taking advantage of this formula.
First we note that because c̄γ is a critical point we have k¯ sin ¯

c c
2ω η θ′ = where k is a

constant. Write ˜̃ ˜ c̄ω ω η≔ and disregard the first term in (5.45). We get

}( )

k k
2 ˜

¯

sin ¯ ˜̃ ˜̃
¯

sin ¯ ˜

2
˜̃ ˜ e sin ¯d ¯. (5.46)

ab
c c2

0
¯

¯ 2 2

2 2 ¯

a

b

c




∫ σ

η
θ ω ω

η
θ σ

ω σ θ θ

∂ ⩾ ′ + + ′ −

+ +

τ τ
θ

θ

σ

=

−

⎪
⎪

⎧
⎨
⎩

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

Let { }s min (sin ¯) c̄θ η≔ and assume

k

s
˜ sin ¯d ¯ 4

˜̃ sin ¯d ¯. (5.47)2
2

2
2∫ ∫σ θ θ ω θ θ′ >

Ω Ω

Then the first term in (5.46) can be bounded as

k
˜

¯

sin ¯ ˜̃ sin ¯d ¯ (5.48)c

¯

¯ 2 1 2

a

b∫ σ
η

θ ω θ θ′ + ⩾
θ

θ⎡

⎣
⎢⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤

⎦
⎥⎥

k
˜ sin ¯d ¯ ¯

sin ¯
˜̃ sin ¯d ¯ (5.49)c

¯

¯
2

1 2

¯

¯ 2 2

2
2

1 2

a

b

a

b∫ ∫σ θ θ
η

θ
ω θ θ⩾ ′ −

θ

θ

θ

θ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

Class. Quantum Grav. 32 (2015) 145006 M E Gabach Clément et al

17



k
s

˜ sin ¯d ¯ ˜̃ sin ¯d ¯ (5.50)
¯

¯
2

1 2

¯

¯
2

1 2

a

b

a

b∫ ∫σ θ θ ω θ θ⩾ ′ −
θ

θ

θ

θ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

˜ sin ¯d ¯ 1
2

˜ sin ¯d ¯ (5.51)
¯

¯
2

1 2

¯

¯
2

1 2

a

b

a

b∫ ∫σ θ θ σ θ θ⩾ ′ − ′
θ

θ

θ

θ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

1
2

˜ sin ¯d ¯ min
sin ¯

2
˜ d ¯ , (5.52)

¯

¯
2

1 2 1 2

¯

¯
2

1 2

a

b

a

b∫ ∫σ θ θ θ σ θ= ′ ⩾ ′
θ

θ

θ

θ⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩
⎫⎬⎭

⎡
⎣⎢

⎤
⎦⎥

where (5.51) has been obtained using (5.47). This bound together with the last term in (5.46)
gives us

c ˜ (5.53)ab
2

0 1 1,2
2 σ∂ ⩾ ∥ ∥τ τ=

for some constant c 0.1 >
Now assume that the opposite to (5.47) holds, namely

k

s
˜ sin ¯d ¯ 4

˜̃ sin ¯d ¯. (5.54)2
2

2
2∫ ∫σ θ θ ω θ θ′ ⩽

Ω Ω

Then from (5.46) we have

( )˜̃ ˜ e sin ¯d ¯ (5.55)ab
2

0
2 2 ¯c ∫ ω σ θ θ∂ ⩾ +τ τ Ω

σ= −

( ){ }min e ˜̃ ˜ sin ¯d ¯ (5.56)¯
¯

¯
2 2c

a

b ∫ ω σ θ θ⩾ +σ
θ

θ−

{ } s

k
min e

4
˜ ˜ sin ¯d ¯ (5.57)¯

¯

¯ 2

2
2 2c

a

b ∫ σ σ θ θ⩾ ′ +σ
θ

θ−
⎛
⎝⎜

⎞
⎠⎟

( ){ } s

k
min e min 1,

4
˜ ˜ sin ¯d ¯ (5.58)¯

2

2 ¯

¯
2 2c

a

b ∫ σ σ θ θ⩾ ′ +σ
θ

θ−
⎧⎨⎩

⎫⎬⎭
which again gives us an inequality c ˜ab

2
0 2 1,2

2 σ∂ ∣ ⩾ ∥ ∥τ τ= for some constant c 0.2 > Thus in
either case we have

c ˜ (5.59)ab
2

0 3 1,2
2 σ∂ ⩾ ∥ ∥τ τ=

for some constant c 0.3 >
Now we can interchange the roles of σ̃ and ˜̃ω (observing the symmetry in (5.46)) to find

again

c ˜̃ . (5.60)ab
2

0 3 1,2
2 ω∂ ⩾ ∥ ∥τ τ=

Using that ˜̃ ˜ cω ω η= and by an argument similar to the previous one we deduce from (5.60)
that

c ˜ (5.61)ab
2

0 4 1,2
2 ω∂ ⩾ ∥ ∥τ τ=

for some constant c 0.4 > Collecting (5.59) and (5.61) we get

c c( ˜ , ˜ ) ¯ ¯ (5.62)ab c
2

0 5 1,2
2

5 1,2
2 σ ω γ γ∂ ⩾ ∥ ∥ = ∥ − ∥τ τ=

for some constant c 0.5 >
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Having treated the second term on the right hand side of (5.28) we turn to the last one.
We claim that there is a constant c 06 > such that if ¯ ¯ 1c 1,2

γ γ∥ − ∥ ⩽ then

c ( ˜ , ˜ ) . (5.63)*ab
3

6 1,2
3 σ ω∂ ⩽ ∥ ∥τ τ τ=

Combined with (5.28) this would show, as we want, that if ( ˜, ˜ ) 1,2σ ω ϵ∥ ∥ ⩽ for ϵ sufficiently
small, then (5.24) holds for some constant c 0.> The bound (5.63) is indeed easily obtained.
A direct computation gives

2
6 ˜ ˜ 12 ˜ ˜ ¯ 4 ˜ ¯

¯ 2
˜ e sin ¯d ¯. (5.64)ab

3
¯

¯ 2 2 3 2

2
3 ˜

a

b ∫ σω σ ω ω σ ω
η

σ θ θ∂ = − ′ − ′ ′ + ′ +τ θ

θ σ−
⎛
⎝⎜

⎞
⎠⎟

Bounds for each term in this integral, compatible with (5.63), are obtained by using that
˜ ˜ ( ˜, ˜ )1,2 1,2σ π σ π σ ω∥ ∥ ⩽ ∥ ∥ ⩽ ∥ ∥∞ , and that if ¯ ¯ 1c 1,2

γ γ∥ − ∥ ⩽ then c¯ 7σ∥ ∥ ⩽∞ and
c¯ 2 8ω∥ ′∥ ⩽ for constants c 07 > and c 0.8 > For instance the first term is bounded as

c12
˜ ˜

¯
sin ¯d ¯ 12 sup

1

sin
e ˜ ˜ ( ˜ , ˜ ) (5.65)c

¯

¯ 2

2 3
2

2
2

9 1,2
3

a

b
7∫ σω

η
θ θ

θ
σ ω σ ω′ ⩽ ∥ ∥ ∥ ′∥ ⩽ ∥ ∥

θ

θ
∞

⎧⎨⎩
⎫⎬⎭

for some constant c 0.9 > The other terms are bounded in the same way. □

Proof of proposition 5.2. It will be more convenient to work with the functional ( *)ab
* γ

of the arguments u* ( , )γ ω= with u ln η= − , given by

( ) ( )u* e *e sin ¯d ¯, (5.66)ab
u u*

¯

¯
2 2 2

a

b ∫γ ω θ θ= ′ + ′ +
θ

θ

where

* sin ¯. (5.67)2  θ=
This functional is equal to ( )ab γ plus a constant independent of the arguments. (Use
u ln η= − in (5.23)).

If ab
* is shown to satisfy the Palais–Smale (PS) condition (see below), then a simple

application of proposition 5.1 and the mountain pass theorem, as explained in the corollary on
page 187 of [15], shows that (ln , )e e e*γ η ω= is the only critical point and that ( )ab e

* * γ is the
strict absolute minimum of .ab

*
We explain now how to verify the PS condition. Recall first that the PS condition holds

iff any sequence i
*γ for which ( )ab i

* * γ is bounded and for which ( ) 0ab i
* *δ γ∥ ∥ → has a

(strongly) convergent subsequence. Here ( )ab i
* *δ γ∥ ∥ is the norm of the differential of ab

*
at .i

*γ Recall that this norm is { }X( *) sup ( *) : 1 .ab X ab
* * 1,2 δ γ δ γ∥ ∥ = ∣ ∣ ∥ ∥ = Note from

this definition that if ( ) 0ab i
* *δ γ∥ ∥ → , then for any sequence Xi with X Ki 1,2∥ ∥ ⩽ we have

( ) 0. (5.68)X ab i
* *

i δ γ →

Now, for any tangent vector X u( ˜, ˜ )ω= to a point u* ( , )γ ω= we compute

( ) ( )u u u u* 2 ˜ 2 ˜ e 2 ˜ e ˜ sin ¯e sin ¯d ¯. (5.69)X ab
u u u*

¯

¯
2 2 2 2

a

b ∫δ γ ω ω ω θ θ θ= ′ ′ + ′ + ′ ′ +
θ

θ

This expression will be used below.
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Let i
*γ be a sequence such that ( )ab i

* * γ is uniformly bounded and such that
( ) 0.ab i

* *δ γ∥ ∥ → From (5.66) we deduce that ui 2∥ ′∥ is uniformly bounded4 and from this
and (5.17) that ui is uniformly bounded and uniformly continuous. By the theorem of Arzelà –
Ascoli, ui has a C

0-convergent subsequence (that we still index by ‘i’). As ui 1,2∥ ∥ is uniformly

bounded we can assume that ui converges weakly in H1,2 too. Then, from the C0-boundedness
of ui and again from (5.66), we deduce in a similar fashion that iω has a subsequence
converging in C0 and weakly in H .1,2

Assume then without loss of generality that for the above sequence i
*γ we have u ui → ∞

and iω ω→ ∞ weakly in H1,2 and strongly in C .0 Let c 0> be a constant such that
c e sin ¯u2 i θ< for all i. Then,

( ) ( )

( ) ( )

c d ¯ e sin ¯d ¯

e sin ¯d ¯ e sin ¯d ¯ 0, (5.70)

i i
u

i i
u

i
u

¯

¯
2

¯

¯
2 2

¯

¯
2

¯
2

a

b

a

b
i

a

b
i

a

b
i

∫ ∫
∫ ∫

ω ω θ ω ω θ θ

ω ω ω θ θ ω ω ω θ θ

′ − ′ ⩽ ′ − ′

= ′ ′ − ′ − ′ ′ − ′ →

θ

θ

θ

θ

θ

θ

θ

θ

∞ ∞

∞ ∞ ∞
⎛
⎝⎜

⎞
⎠⎟

where the first integral in (5.70) is seen to go to zero by taking V (0, ˜ )i iω= with
˜ i iω ω ω= − ∞ in (5.68), while the second integral in (5.70) tends to zero because iω ω→ ∞
weakly in H1,2 and u ui → ∞ strongly in C0 and weakly in H .1,2 From (5.17) and (5.70) we
deduce that 0i 2ω ω∥ − ∥ →∞ , which together with (5.70) again shows that iω ω→ ∞ in H .1,2

The convergence u ui → ∞ in H1,2 is shown in the same fashion.

Proof of proposition 5.3. Inequality (5.26) follows from propositions 5.1 and 5.2, together
with the relation (5.22) between the functionals ab and ab , as they imply that extreme
KdS data ( , )e eσ ω are the unique global minimizers of ab among functions ( , )σ ω having
the same boundary conditions as ( , )e eσ ω at , .a bθ θ

The proof of (5.27) is line by line identical to the proof when 0Λ = and which was
obtained in [1]. We will only sketch the argument here and refer the reader to [1] for details. It
is important to remark that the presence of the cosmological constant plays no important role
in this step.

Divide the interval [0, ]π in three regions, {sin e }I
t(ln )2Ω θ= ⩽ , {eII

t(ln )2Ω = ⩽
tsin }θ ⩽ and t{ sin }.IIIΩ θ= ⩽ Note that when t goes to zero, the regions IΩ and IIΩ

shrink toward the poles, while IIIΩ extends to cover the whole interval [0, ].π Then a specific
partition function f ( )θ (see equations (70)-(71) in [1]) is used to interpolate between extreme
KdS horizon data in region IΩ and general data in region .IIIΩ Define the auxiliary
interpolating data t t t( ) ( ( ), ( ))γ σ ω= as

( )t f f( ) (sin ) 1 (sin ) , (5.71)t t eγ θ γ θ γ= + −
then, as mentioned before, combining propositions 5.1 and 5.2 on the region
[ , ]a b II III∪θ θ Ω Ω≔ for functions t( ): ab

25γ Γ → we find

t( ( )) ( ). (5.72)ab ab e γ γ⩾
Moreover, as t( ) eI Iγ γ∣ = ∣Ω Ω , we can extend (5.72) to [0, ]π (recall that [0, ] [ , ]I a b∪π Ω θ θ= )
to obtain

4 Note that there are constants c c0 1 2< < < ∞ such that c csin .1 2θ< <
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t( ( )) ( ). (5.73)e γ γ⩾
The final step is to show that as t goes to zero, the mass functional for the auxiliary data
converges to the mass functional for the original general data, that is

tlim ( ( )) ( ). (5.74)
t 0

 γ γ=
→

This is done in an identical manner as in [1] (with Λ being irrelevant here), by using that
(sin )e

2ω ω θ= + near the poles and that ( ) γ and ( )e γ are well defined.
Inequalities (5.73) and (5.74) give (5.27).
Moreover, using the explicit value

( ) A
e

ˆ

4
(5.75)

A a, , ˆ , ˆ ˆ

8 ˆ
e e

π=
σ ω β

κ
−

we find

( ) A
e

ˆ

4
(5.76)

A a, , ˆ , ˆ ˆ

8 ˆ


π⩾

σ ω β
κ

−

which is inequality (5.10). □

6. Possible generalizations

We conclude discussing possible extensions of our main result to the case with electro-
magnetic field and to the case 0.Λ < In the former case we conjecture an inequality which, in
addition to A, J and Λ, contains electric and magnetic charges QE and QM in the combination
Q Q Q .E M

2 2 2= + Such an extension is natural from the fact that all special cases are proven, in
particular we recall [6] the bound A J Q16 (4 )2 2 2 4π⩾ + in the case 0.Λ = Moreover,
extreme Kerr–Newman–de Sitter saturates (6.1) and (6.2).

Conjecture 6.1. Under the assumptions of theorem 1.1 but under the presence of
an electromagnetic field with charges QE, QM with Q Q QE M

2 2 2= + and for any 0Λ > we
have

J
A A A Q Q

64
1

4
1

12
2

3 4
(6.1)2

2

2

2 4

π
Λ

π
Λ

π
Λ⩽ − − − −⎜ ⎟⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

or equivalently,

Q
A A A

J

Q
A A A

J

48 16
1

6
4

48 16
1

6
4 0. (6.2)

2
2

2

2

2

2
2

2
2

2

2

2

2
2

Λ
π π

Λ
π

Λ
π π

Λ
π

+ − − −

× + + − − ⩽

⎜ ⎟

⎜ ⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟

Moreover, (6.1) and (6.2) are saturated precisely for extreme Kerr–Newman–de Sitter
configurations.

As to the calculations leading to (6.1) and (6.2) we made use of equation (44) of
Caldarelli et al [4], where the temperature T of a Kerr–Newman–anti-de Sitter black hole is
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given in terms of l 32 Λ= − , the mass M, the entropy S A 4= , Q and J. This calculation is
insensitive to the sign of Λ, and the requirement that T 0⩾ gives directly (6.1), while (6.2) is
obtained via simple algebraic manipulations.

We finally comment on the prospects of proving the area inequalities (1.5), (6.1)
and (6.2) for the case 0Λ < along the lines described above. We first remark that
extreme Kerr–anti-de Sitter saturates (1.5) which should be clear from the discussion of
section 3, and extreme Kerr–Newman–anti-de Sitter saturates (6.1) and (6.2). Next, the first
part of our proof of (1.5), namely the lower bound for A in terms on  as given in (4.8)
carries over to 0Λ < straightforwardly. However, attempts of obtaining a lower bound for 
analogously to (4.12) seem to be in vain. The reason is that one can easily construct examples
with sufficiently small σ (negative with large modulus), and suitably adjusted ω for which
the last term in (4.9), which is now negative, dominates the first two positive terms.
In fact these examples strongly suggest that  is even unbounded from below unless the
data are restricted appropriately. Therefore, while it is still possible that (1.5), (6.1) and
(6.2) hold for 0Λ < as well, our strategy which was successful for 0Λ > is unlikely to
carry over.
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